
A practical guide
to continuous
performance testing

Table of contents

1.	 Introduction	 3

2.	 Getting started	 4

	 a. Assess your gaps 	 4

	 b. Prioritize, then systematize	 5

	 c. Prioritization methodologies	 6

3.	 Lay the foundation for success	 7

4.	 Start with the end in mind	 8

	 a. Distinguish between SLA, SLO, and SLI	 8

5.	 Pick the right targets to automate	 9

	 a. Pick the right teams	 10

	 b. Why APIs are easier	 10

	 c. How early is early enough to performance test APIs?	 11

6.	 Make scripting easy for multiple teams	 12

7.	 Co-locate app and test automation code	 13

8.	 Develop performance pipelines	 14

9.	 Use dynamic infrastructure for test environments	 15

10.	 Ensure trustworthy go/no-go decisions	 18

	 a. Reduce cognitive thrash	 19

	 b. Layer in guardrails	 20

11.	 Conclusion	 20

12.	 About Tricentis	 21

tricentis.com 3© 2021 Tricentis GmbH. All Rights Reserved |

INTRODUCTION

This guide presents pragmatic considerations and experienced-based best practices for performance
engineers looking to automate performance testing in CI/CD pipelines.

The #1 challenge we hear from those responsible for performance testing is the difficulty in keeping
up with the pace and scale of development teams so that you can deliver performance feedback early
and often. They’re caught in a crossfire between performance being more imperative than ever — slow
or buggy systems and applications have a material impact on customers/users, brand reputation, and
bottom-line revenue — and releases coming faster than ever. The clock speed of testing is mismatched
to the speed of development. With today’s automated builds taking minutes — not hours (or days) —
integrating continuous performance testing into automated pipelines is the only answer.

That means breaking down performance verification into smaller meaningful feedback loops that fit into
shorter cycles. “Right-fitting” performance tests into automated pipelines provides early signals that are
actionable (i.e., feedback loops). As product teams develop new features and make changes to application
code, they know right away what kind of impact each change has on application performance.

This avoids the pain and delay of discovering a major performance issue at the 11th hour, when it’s more
costly and difficult to isolate and fix the problem. Nobody wants to be the person who holds up a release
at the last minute because they found a major performance issue that wasn’t resolved earlier in the cycle.

We’ve seen that virtually every organization is looking to enable testing “early and often.” However, many
find it difficult to get from theory to practice. This white paper offers guidance on laying the foundation for
a successful transition to an automated testing approach and discusses practical solutions to overcoming
common automation “blockers.”

tricentis.com 4© 2021 Tricentis GmbH. All Rights Reserved |

GETTING STARTED

Assess your gaps

Before you can begin implementing continuous performance testing into automated pipelines, you must
take stock of your readiness for automation. It’s instinctive to say that the goal of automated testing is
to go faster or accelerate delivery, but that applies only when it works reliably and produces actionable
outcomes. Getting to “reliable” and “actionable” embraces people and process as well as technology.
Automation forces you to articulate your goals, requirements, and activities in a way that machines can
execute on your behalf. It shines a light on gaps in your processes, technologies, and skills — not in
a negative sense of creating a laundry list of deficiencies, but rather to identify potential blockers to
continuous performance testing. Subsequent sections of this white paper discuss processes, strategies,
and approaches for overcoming common obstacles.

One way of looking at things and assessing gaps that may impede automation is to look where aspects of
performance testing is easy (or not). Within the context of your current tech stack, processes, and staffing,
is it easy to script tests, automate processes and infrastructure requirements, and consume the results of
testing? The harder things are, the more you will remain dependent on a handful of experts to do them.

People Process

Technology

Automation

tricentis.com 5© 2021 Tricentis GmbH. All Rights Reserved |

In evaluating your automation readiness, think about where you want to be in the future. Many organizations
that are currently executing performance testing “as a service” are on the road to changing to a “self-service”
model where product teams are able to seamlessly and autonomously integrate performance testing into
their development sprints. This scales performance testing beyond a few scarce subject matter experts
(SMEs) to an organization-wide approach. These SMEs then move beyond just running tests and analyzing
results; they act in a consultative manner to apply their expertise to PI planning, providing product teams
with ways to do more things themselves (easily) while implementing safety guardrails and best practices so
that teams iteratively build up their own performance competency over time.

Automation allows organizations to formalize performance testing practices into work where machines
— not people — do the laborious, time-consuming heavy lifting.

Prioritize, then systematize

Automated continuous performance testing isn’t just about running a higher volume of test cases. While
a greater number of tests can certainly improve coverage and mitigate more risks, the key is quality and
timing rather than quantity. The whole point of continuous performance testing is to provide developers
with early signals that are actionable (feedback loops) so that they know — immediately and precisely
— what kind of impact their code changes have on application performance. If you run 1,000 tests
continuously without uncovering defects in time to fix them, what’s the point?

Prioritization is often the missing ingredient to the recipe for testing “early and often.” Just as you can’t
test everything, you can’t automate feedback loops for everything. That only slows things down. When
determining which performance tests to “right-fit” into automated pipelines, find high-value tests that
focus on business risk and the main paths that customers/users actually follow.

It’s much easier to make a case for performance testing systems, applications, and components in the
critical path — those that everyone agrees are important and have bottom-line impact — than services
that are far removed from what others think is critical. Therefore, figuring out which systems and
components need continuous feedback isn’t on the shoulders of one individual; it calls for conversations
among engineers, developers, and business stakeholders.

tricentis.com 6© 2021 Tricentis GmbH. All Rights Reserved |

Prioritization methodologies

One method for prioritizing where performance feedback loops should be automated is the Utilization-
Saturation-Errors (USE) model. As its name suggests, the model is based on three metric types and can
be adapted to the context of performance testing:

•	 Utilization: Which core APIs or microservices are at the nexus of many other business processes,
thereby ballooning their usage as a shared enterprise architecture component?

•	 Saturation: Which services have experienced “overflow” — the need for additional VMs/costs to
horizontally scale — or are constantly causing SEV-n incidents that require “all hands on deck” to get
back into reasonable operational status?

•	 Errors: From a perspective of “process error,” how many times has a specific service update or
patch been held up by long-cycle performance reviews? Which systems do you need fast time-
to-deploy or where slow feedback cycles cause the product teams to slip their delivery deadlines
(immediate or planned)?

Services that usually rank high on one or more of these vectors include user/customer authentication,
cart checkout, and claims processing.

Other ways to evaluate system performance — such as rate-error-duration (RED) signals and business
metrics from analytics and monitoring platforms — ensure that critical-path and revenue-generating user
experiences are working as expected.

More about system performance analysis

•	 System Performance: Enterprise and the Cloud by Brendan Gregg

•	 Utilization-Saturation-Errors (USE)

•	 Rate-Error-Duration (RED)

https://www.amazon.com/gp/product/0133390098/
http://www.brendangregg.com/usemethod.html
https://www.youtube.com/watch?v=OVuWxzVWVrc&t=748s

tricentis.com 7© 2021 Tricentis GmbH. All Rights Reserved |

LAY THE FOUNDATION FOR SUCCESS

Before embarking on continuous performance testing, it helps to have a few things fleshed out ahead of
time. These are common roadblocks to automating performance tests, and it’s the first two that are often
overlooked but are crucial to delivering automated feedback loops. For automated performance tests
to produce meaningful, actionable outcomes, people need to communicate about goals and outcomes.

•	 Non-functional requirements/criteria. There should be some kind of performance criteria intake
process. It could be something as simple as a form or questionnaire about the systems and timeframes
that performance testing should target.

•	 Clear and communicated goals/outcomes. Precise system performance and reliability expectations
should be described as service level agreements (SLAs), objectives (SLOs), and indicators (SLIs). These
monitoring metrics should be aligned across and mutually agreed-upon by production, development,
and operations teams as well as business stakeholders.

•	 Consistently available system/environment to test. You can’t test an application or service that
you can’t contact, so often this means having a “performance testing target environment” be part of
the project plan.

•	 Results analysis and response action plan that all teams — not just the performance engineers
— agree to uphold. If you’re not fixing issues in a timely manner, why spend the energy and effort to
build timely feedback loops?

tricentis.com 8© 2021 Tricentis GmbH. All Rights Reserved |

START WITH THE END IN MIND

To automate performance tests that produce meaningful, actionable outcomes, the criteria for those
outcomes must be communicated at the outset. If your “early and often” tests don’t sufficiently warn you
when performance is outside an acceptable range, they’re not really telling you what you need to know
when you need to know it. Discussing SLAs, SLOs, and SLIs up front is crucial to providing actionable
feedback loops and realizing automated go/no-go decisions. Omitting performance criteria from the
planning process is a common but fundamentally problematic occurrence. Often the people responsible
for drafting SLAs are not performance experts and would benefit from such experts’ insight into what and
how to measure performance. Performance experts’ having a “seat at the planning table” goes a long way
to ensuring effective, efficient feedback loops.

Something as simple as digital intake forms that are pre-filled for product teams encourage these
discussions to produce baseline automation artifacts like SLA definitions and API test details.

Distinguish between SLA, SLO, and SLI

When thinking about defining how your software or services need to work, you probably are
talking in terms of a Service Level Agreement (SLA) that describes the commitment between
teams about the expectations of a particular service, laying out measurable metrics (like uptime
or responsiveness) and the responsibilities of each team. SLAs are essential, but they tell only part
of the story. They are typically written by people who are not actually “in the trenches” and can be
difficult to measure. More specificity is needed.

A Service Level Objective (SLO) is an agreement within an SLA about a standard, well-understood,
mutually agreed-upon set of metrics. If the SLA is a commitment, SLOs are the individual promises.
These are the goals that the different teams need to hit so that everyone is comparing apples
to apples.

An SLI (service level indicator) measures compliance with an SLO (service level objective). SLIs
provide the details regarding how operational performance is measured in terms of the SLA. The
more exact, the better.

An SLA based on a well-defined SLO, then measured against a set of metrics that are the result of
a detailed SLI, benefit general operations as well as the testing process. Tests that meet the SLA
to the letter according to clearly defined parameters described in the SLI provide greater accuracy
and more reliable analysis.

tricentis.com 9© 2021 Tricentis GmbH. All Rights Reserved |

PICK THE RIGHT TARGETS TO AUTOMATE

Like any journey, the road to automated performance testing can be steep if you don’t start in the right
place. You need to pick the right target. You probably have dozens of teams that eventually need timely
performance feedback loops in their delivery process, but it’s best to start small with “easier” low-hanging
fruit — specifically, APIs.

This approach provides threefold benefits. First, if it’s done correctly, you’ll realize “quick wins” demonstrating
that baking performance tests into the development process early provides value without incurring delays.
That makes it easier to get everyone on board; success breeds adoption. Second, starting small allows
teams of all skill sets and levels of expertise to develop confidence and build automation competence, which
can then be extended to other, more complex types of testing. Finally, breaking down the performance
verification process into smaller feedback loops that match the faster clock speed and shorter work cycles
of development provides teams with performance feedback earlier and more often so that by the time you
test end to end, it’s not a Dumpster fire. If an API doesn’t perform properly, then there’s no way end-to-end
testing of all the integrated APIs will meet expectations.

Project /
Team

Tests
created?

Deploy-ready
(able to QA)?

Relationship and
value to team

Using SCM
and pipelines

Mobile APIs In Postman Yes, in UAT Very positive Yes

Customer
billing APIs

In Postman &
testing tool + SLAs

Yes, in UAT; all shared
services mocked out

Some work together
in prior years, needs
SLA revisions

Yes

Claims batch
processing APIs

SoapUI and some
testing tool

Yes, in ESB
shared service

Unknown, not
discussed w/ PO

Yes

Mobile app Custom Espresso and
XCTest scripts

Partial, relies on some
shared production
services

Initial intros, no
requirements
discovery yet

No, and app
sandbox publishing
process is slow

Sample Considerations Matrix for Picking the Right Early API Performance Testing Targets

APIs aren’t the only places where performance feedback matters, but they’re ubiquitously dispersed along
the user experience and up and down distributed system call chains. The most consistent and predictable
performance issues show up in API calls. Large payloads, hard-to-cache request patterns, and latency due
to variances in payloads are issues that can be overcome early by writing a few low-complexity API load
tests within development cycles.

Easy More effort Difficult

tricentis.com 10© 2021 Tricentis GmbH. All Rights Reserved |

Most organizations already have a huge backlog of APIs and microservices that aren’t yet covered by
performance testing. You probably already know which systems have experienced unexpected downtime
or have identified them as high-risk. They’ll have APIs for which you lack visibility into performance,
scalability, or reliability. You almost certainly have a cross-section of APIs in your portfolio that are easy
targets yet also on a critical business path in terms of revenue or risk. These services are the ones you
should focus on as initial targets for building out continuous performance feedback loops.

Pick the right teams

Part of picking the right APIs to target is picking the right teams to work with. Teams that already have
something deployed and ready to test — either in lower environments or in production — are a great
place to begin. Consider starting with teams that performance engineers already have a relationship with.
This makes obtaining architecture diagrams, getting access to monitoring tools, and initiating a proper
performance criteria intake process early in sprints more straightforward.

Why APIs are easier

First and foremost, APIs have a much smaller “surface area” to test in terms of complexity and SLAs.
Often API teams already have a manifest of the REST API as described by an API specification, such as
OpenAPI, Swagger, or WSDL documents. Additionally, test data is often more straightforward to inject
since the payloads are often self-descriptive (i.e., field names and data match formats in examples).
Finally, organizations with APIs often have functional test assets, such as in Postman or REST Assured test
suites, which provide a reference point for constructing performance test scripts.

Dealing with API endpoints and payloads is often far less complicated than dealing with complete traffic
captures of end-to-end web applications, which often include dynamic scripts, static content, front-end
API calls only, and other client-side tokenization semantics. API endpoints described in specification docs
make scripting and playing tests back a far simpler proposition than ever before, rendering them as “easy”
targets for early testing. Service descriptors also make it far easier to mock out APIs than entire web
servers for end-to-end app tests.

tricentis.com 11© 2021 Tricentis GmbH. All Rights Reserved |

“It’s rarely ‘too early’ to think about testing or expect performance requirements to be in order before
moving on in development cycles. But you have to be ‘in the room’ at the early PI and architecture
meetings, and don’t expect that others are going to capture and document what is needed to know
to test earlier.”

Paul Bruce, Director of Customer Engineering, Tricentis NeoLoad

Testing Tool /
Framework

Real
Component

Mock

Tests run against
real component

2

Testing Tool /
Framework

Tester creates
tests using mock

1

How early is early enough to performance test APIs?

How can you test something that hasn’t been built yet? That’s often the case with non- functional
API testing — you have to wait until it’s in staging before you can script and run tests. But the
unfortunate reality is that performance engineers no longer have the luxury to waterfall the
process or defer questions of testability and proper requirements gathering to “later.”

One common practice when left-shifting feedback loops is to “mock out” dependencies. In the case
of APIs, you may want to write your tests before the actual API is deployed. Many organizations
use service virtualization for fault isolation (removing specific third parties from integration testing)
but fail to realize how useful API mocking is for the process of creating test suites before the actual
APIs are deployed. This practice accelerates the process of including performance feedback loops
simply by having automatable test assets ready to go before the actual automated testing process
needs them. In fact, some performance teams have even created their own open-source tools,
such as Mockiato, to make this a part of their daily Agile testing practices.

https://github.com/Optum/mockiato

tricentis.com 12© 2021 Tricentis GmbH. All Rights Reserved |

MAKE SCRIPTING EASY FOR MULTIPLE TEAMS

It doesn’t help to pick “easy” targets to test if designing, maintaining, and running your tests isn’t also
“easy.” And that starts with creating test scripts. Scripting has to be easy and fast to enable the high
degree of automation needed to make continuous performance testing a reality.

As part of your people/process/technology assessment, you will have identified what resources you
have available — specifically, the technical experience and expertise of the people you expect to do the
testing. Consider not just where you are today but where you want to be in the future. For example, you
may have tagged a small group of performance experts to do API testing now, but down the line you’d
like to move toward developers autonomously running performance tests themselves as part of their go/
no-go decisions.

These considerations dictate how you ensure “easy scripting” and, to a large extent, which performance
testing tools you adopt. Look for a tool that the people doing the testing will actually use. Just about every
script-based performance testing solution (commercial or open source) claims that you don’t need any
scripting experience to create tests, but the reality is that most of them do in fact require specialized
expertise. This essentially asks people who are already too busy to become performance experts
overnight, or expects them to devote time they don’t have to learn some new tool. That’s a leading reason
why legacy tools have never gained traction with DevOps teams.

https://www.neotys.com/blog/getting-started-with-automated-continuous-performance-testing/#PerformanceAdoptionJourney

tricentis.com 13© 2021 Tricentis GmbH. All Rights Reserved |

The method for scripting tests should adapt to the way testers work, not the other way around. If your
testers are more comfortable writing scripts in a GUI, the tool should accommodate that. But many
developers prefer to express tests as code that can be integrated into automated CI pipelines, so the tool
should allow that approach as well. To realize continuous performance testing, you should avoid tools
that make you choose one way or the other. Find a single solution that enables both.

Also be aware that with most script-based testing tools, you’ll probably spend an inordinate amount of
time maintaining scripts. That might be okay if you’re testing only a single API, but as the volume of APIs
to test increases, so do the number of scripts to maintain. Beware of testing tools that break scripts every
time code changes — instead, look for tools that can maintain scripts automatically, updating only the
part of the test that’s changed.

CO-LOCATE APP AND TEST AUTOMATION CODE

If you don’t already, it’s a good idea to keep your test scripts and other test artifacts in the same source
repository as your production application code. Most organizations have settled on some form of Git-
compliant version (GitLab, AWS CodeCommit, Azure Repos, Bitbucket) as their default version control
repository. This enables you to maintain your test artifacts in a system of control that’s well understood
by many different teams across the organization.

Conversely, storing your performance tests in a monolithic silo (as some legacy performance testing
solutions do) isolates performance testing activity from the rest of your automated CI tools (Jenkins,
Bamboo, TeamCity, Digital.ai Release, née XebiaLabs XLRelease). That keeps performance testing in the
hands of only the select few, not the many and undermines your ability to get earlier, faster feedback
loops. When your test automation code lives in a different repository than application code, you typically
check in and build the app code before executing the test automation. But when automation code is in
the same repository, developers can execute automated scenarios at the same time they run their unit
tests — before they check code in. This provides them with much earlier feedback on the code they
wanted to submit.

tricentis.com 14© 2021 Tricentis GmbH. All Rights Reserved |

DEVELOP PERFORMANCE PIPELINES

You may consider storing not only your test suites in Git but also store “performance pipeline” scripts in
the same repos as load test projects. Performance testing comprises versionable artifacts that must match
the app or service code you’re testing, so app and test code assets should be in lockstep with each other.
Changes to test scripts, testing semantics, and test data sources all usually predicate incorporation into the
semantics of your pipeline scripts. But with multiple teams developing features that are flying out the door
simultaneously, making sure that versions are the same across code and test assets can be a challenge.

One solution is to make “performance pipelines” triggerable processes separate from broader delivery
pipelines. Rather than treating the delivery pipeline as one big monolith, having discrete jobs or pipelines for
specific post-build, longer-running test processes allows teams to decide when to trigger them (e.g., not on
every commit/push but upon pull requests and before significant merges). Short branches in Git that version
your new code and tests together — and are a separate branch from the primary/master branch already
approved and used by teams — can be run as the pipeline and proven to be working in order for promotion
back to the master/trunk.

Checkout

Build Unit test Deploy
Security

Stage

Pull assets Prepare Run Go-no/go Finalize

Load test

Build Test

Firefox

Staging Production

tricentis.com 15© 2021 Tricentis GmbH. All Rights Reserved |

You may want to name the branches the same across app and test repositories, or possibly using Git tags
that match between these assets. You might clone the current working test suite, modify it and run local
load tests, then check it into a new branch and have your pipelines run that branch of test assets on the
latest version of the services in a pre-release environment. You may even version your pipeline code right
alongside all these assets so that once you prove that everything’s working, the promotion (e.g., merge)
of these branches in various repositories happens simultaneously.

The end goal of performance pipelines is to make it easier to re-run just the performance test if it fails, not the
whole delivery pipeline. Separating pipeline stages enables you to run and re-run the load testing process
if and when everything compiles and deploys properly but performance SLAs fail due to misconfiguration
or environment issues. You don’t necessarily need to re-run all the predicating build, package, and deploy
steps. Often just some operational configuration and deployment tweaks are sufficient to achieve optimal
performance. Then, re-running the performance testing pipeline is a simple task.

Ignore the urge to fix test issues in the master branch. When performance tests fail, understanding why
they failed is critical not only for traditional deep-dive analysis but also to inform automated go/no-go
indicators in pipelines. Having separate versions of pipelines to diagnose issues helps engineers isolate
faults, correct, verify, then integrate their changes back into the production version of the automated
process. The number one reason continuous performance testing fails is not testing changes — neglecting
to update performance pipelines inadvertently makes them seem flaky or broken.

USE DYNAMIC INFRASTRUCTURE FOR TEST ENVIRONMENTS

Test environment infrastructure is the “big rock” obstacle that prevents many from getting reliable,
statistically significant feedback on application or component performance. Specifically, the infrastructure
you’re using for testing the system under test (SuT) needs to be separate from the infrastructure used to
put pressure on that SuT.

For short, small local performance checks, using a single compute resource is fine; but once you get
to larger and longer tests, you have to break up the work across multiple compute resources (load
generators) and orchestrate the tests with a controller. The load generators split up the responsibility of
putting lots of pressure on the SuT, allowing the controller to consolidate real-time results during tests.
It’s the same idea as build nodes in CI pipelines, just for the purpose of getting performance objective
data that is not biased by the SuT resources when under pressure.

tricentis.com 16© 2021 Tricentis GmbH. All Rights Reserved |

In a pipeline it’s problematic to conflate the role of the build node with the load-making software,
particularly if that resource is stressed by generating the load — as build status then stops getting reliably
reported to the CI master. No one wants flaky agents or failed builds, especially not at scale when running
many tests independently of one another. A preferable approach is to leave the pipeline’s worker node to
just execution semantics (see “Develop performance pipelines” above) but requisition load infrastructure
dynamically from a separate system.

The problem with traditional static “always-on” infrastructure in continuous delivery is that you eventually
run out of resources when the demand gets too high. If you have too many concurrent build triggers due
to the high velocity of feature teams’ work, you may wind up failing the build if resources aren’t available
because someone else is using them. This problem mushrooms if you need multiple resources per
build, such as multi-test environments or multiple load controllers/load generators just to run a test. Or
conversely, you may find yourself oversizing (and overspending on) resources so that sufficient hardware
for testing is available when you need it — but otherwise sits idle.

Reserving and queuing resources doesn’t tackle the underlying condition and ultimately becomes an
anti-pattern that gets in the way of delivery. A better option is dynamically provisioning using automated
resource descriptions.

tricentis.com 17© 2021 Tricentis GmbH. All Rights Reserved |

Many organizations make the switch from always-on static load generators to dynamic only-when-needed
infrastructure with traditional virtual machines via VMware on-prem or cloud-based solutions like AWS
EC2, Azure or Google Cloud. But this approach has two drawbacks:

•	 Takes too long to spin up (on the order of minutes)

•	 Often requires customized manual configuration and repackaging every time
as small part of the software version changes

Alternatively, Docker-based solutions like OpenShift and Kubernetes (including Amazon EKS, Google GKE,
Microsoft AKS) launch in seconds and are fast to update/publish new versions to a container registry.
Auto-provisioning testing infrastructure as needed via these elastic container orchestrators enables you to
abstract load infrastructure from performance pipeline semantics more efficiently and effectively. It makes
your pipelines more concise, easy to understand, and quick to adjust as necessary. And it removes one of
the biggest obstacles to autonomous self-service performance feedback loops across large organizations.

If you’re not ready to go that route, most leading performance testing vendors offer some sort of dynamic
infrastructure capability. Key things to evaluate are (obviously) the reliability of the system and ease of use:
Do you need to write lengthy scripts to provision machines? Manually connect dynamic testing resources
to CI pipelines? Manually change the number of load generators used for a test?

Whatever provisioning approach you take, it has to be easy for teams of non-experts to run a test
autonomously.

App App App

Operating System

Hardware

App App

Bin/Library

Hypervisor

Virtualized Deployment

Traditional Deployment

Container Deployment

Operating System

Operating System

Hardware

Virtual Machine

App App

Bin/Library

Operating System

Virtual Machine

Container Runtime

Operating System

Hardware

App

Bin/Library

Container

App

Bin/Library

Container

App

Bin/Library

Container

tricentis.com 18© 2021 Tricentis GmbH. All Rights Reserved |

ENSURE TRUSTWORTHY GO/NO-GO DECISIONS

The whole point of implementing continuous performance testing is to provide the right people with
useful, frequent feedback that can actually help them do something about the performance of the
system, application, or component. In CI pipelines, these early feedback loops manifest themselves into
actionable, trustworthy go/no-go decisions.

Test results must be easy to understand and actionable for product teams and developers, and you
shouldn’t have to wait a long time to know if during your performance pipeline your systems, application,
or service is failing performance thresholds. Too often, gains realized from automating test execution are
undermined by the need to manually swivel from screen to screen, cobbling together data to get a clear
picture of what’s going on — so-called cognitive thrash. A large part of automating go/no-go decisions is
ensuring that the tests incorporate and reflect specific SLOs as measured by precise SLIs (see “Start with
the end in mind” above).

The illustration below displays results of nightly load testing where critical API endpoints and workflows
provide an easily accessible view of performance over time:

Additionally, each of these test results has specific SLAs, further clarifying what meets vs. what falls short
of expectations:

tricentis.com 19© 2021 Tricentis GmbH. All Rights Reserved |

Service “impact” metrics such as USE and RED should be a critical part of your go/no-go decision strategy.
The combination of RED and USE measurements during a load test allows performance pipelines to
“fail fast” across both the pressure/load and impact/service observations. Without both these types of
metrics, you simply do not have a sufficient view to know if performance is acceptable or not.

Reduce cognitive thrash

Performance data must be easily consumed and domain-specific. The more (and more often) you have
to look at data, graphs and charts, the more likely you will get desensitized to essential indicators. A big
data dump of all testing results in a PDF doesn’t offer the kind of actionable, timely feedback that actually
helps. Developers and product teams shouldn’t have to wade through a sea of statistics or manually
cobble together information in order to get meaningful insights.

Automated continuous performance testing also enables you to frequently generate performance data
to understand trends over time, not just “big bang” point-in-time samples. Comparing current tests to a
baseline and accessing trend-based data should be easy within the context of pipelines. Trends provide
context at the moment a particular performance issue presents itself. Even with phenomenal application
performance monitoring (APM) and tracing tools in place, you won’t know if the issue is an outlier or
a symptom of a bigger problem. Armed with historical data, you can focus on themes and distributed
patterns rather than log entries. Keeping focus reduces the toil of getting paged again when the same
problem pops up in a different place in your API ecosystem.

tricentis.com 20© 2021 Tricentis GmbH. All Rights Reserved |

Layer in guardrails

As more of the test-execution toil comes off the performance engineer’s plate (and automated into
distributed teams’ workflows), they are freed up to focus more on providing safety guardrails and best
practices around testing practices so that teams can advance their own performance abilities. Often
these experts will look to layer in additional testing artifacts and monitoring processes over and above
what the product teams use in their automated performance testing. Or they may further train and coach
the product teams on what to look for, better analyze results, etc.

This gives rise to the notion of “guardrails” — best practices — that are distilled into testing artifacts
and templates so that performance experts don’t have to repeat the same labor-intensive tasks across
hundreds of teams and performance pipelines. This is really what makes automation a force multiplier
that benefits all teams: how to automate something that people keep asking to be done?

Additional homegrown tooling might be implemented before and after performance test pipelines run,
such as automated environment configuration comparison utilities, chaos injection (such as with Gremlin)
to prove that load balancing and pod scaling in Kubernetes works as defined, and custom baseline
comparison and trends reporting that runs after every load test. These “guardrails” help product teams
by not requiring them to be experts at performance testing process details, but still providing them with
the deep insights they need to take early action and keep their product delivery cycles free from late-
stage surprises.

CONCLUSION

The easiest place to get started with automating continuous performance feedback loops is with API
testing. But enabling automated go/no-go decisions within API testing calls for more time spent on
planning than is currently the norm. And processes and procedures need to be in place to open up timely,
actionable feedback loops — especially around defining SLAs, SLOs, and SLIs; being able to express
performance tests as code; branching pipelines; provisioning test infrastructure; and enabling easy test
results analysis.

But once the foundations of automated continuous performance testing are in place, you are well on your
way to going from testing-as-a-service performed by a handful of performance experts in silos to testing-as-
self-service where performance testing becomes democratized so that teams across the entire organization
have a way to test performance themselves, painlessly and autonomously. Performance experts are freed
up to focus on more strategic, higher-value activities that have a greater bottom-line impact.

DISCLAIMER: Note, the information provided in this statement should not be considered as legal advice. Readers are cautioned not to place undue

reliance on these statements, and they should not be relied upon in making purchasing decisions or for achieving compliance to legal regulations.

tricentis.com 21© 2021 Tricentis GmbH. All Rights Reserved |

ABOUT TRICENTIS

Tricentis is the global leader in enterprise continuous testing, widely credited for reinventing
software testing and delivery for DevOps and agile environments. The Tricentis AI-based, continuous
testing platform provides automated testing and real-time business risk insight across your DevOps
pipeline. This enables enterprises to accelerate their digital transformation by dramatically increasing
software release speed, reducing costs, and improving software quality. Tricentis has been widely
recognized as the leader by all major industry analysts, including being named the leader in Gartner’s
Magic Quadrant five years in a row. Tricentis has more than 1,800 customers, including the largest brands
in the world, such as Accenture, Coca-Cola, Nationwide Insurance, Allianz, Telstra, Dolby, RBS, and Zappos.

To learn more, visit www.tricentis.com or follow us on LinkedIn, Twitter, and Facebook.

AMERICAS
2570 W El Camino Real,
Suite 540
Mountain View, CA 94040
Unites States of America
office@tricentis.com
+1-650-383-8329

EMEA
Leonard-Bernstein-Straße 10
1220 Vienna
Austria
office@tricentis.com
+43 1 263 24 09 – 0

APAC
2-12 Foveaux Street
Surry Hills NSW 2010,
Australia
frontdesk.apac@tricentis.com
+61 2 8458 0766

v. 0521

https://www.linkedin.com/company/tricentis/
https://twitter.com/Tricentis?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.facebook.com/TRICENTIS/
mailto:office%40tricentis.com?subject=
mailto:office%40tricentis.com?subject=
mailto:frontdesk.apac%40tricentis.com?subject=

